CODESYS Application Composer

CODESYS |myypeliis

Data Sheet CODESYS Application Composer

The CODESYS Application Composer is a development tool for the efficient creation of applications consisting
of recurring function blocks.

A 30 day demo license is available for testing. For the full version please contact CODESYS Sales.

Product description

With the CODESYS Application Composer you can customize, i.e. compile and parameterize, complete control
applications from previously created software modules.

Modules are functional program units that can correspond both to machine or system parts as well as software
functions. Along with the program code, modules typically include components such as visualization elements,
parameterization or I/O allocations. With this they cover nearly all programming aspects that CODESYS offers.

The customization of the modules takes place in the module tree. In the process each entry corresponds to a
module instance. In the insertion of new elements into the module structure only suitable modules are offered
for selection. In the module properties the parameterization, the I/O configuration and the visualization selection
are defined for the module instances. Simultaneously the configuration of sequencer modules can take place
with the help of an easy-to-use sequence editor. From the module configuration a menu command generates
the complete application code including visualization and I/O configuration. Application-specific code can be
added in the form of extension modules and remains unchanged if the code is generated again.

With purchasing a functional license you acquire the possibility to create and use new modules or module
declarations within the CODESYS Development System.

The creation of modules takes place in the form of module declarations which can be added as objects in the
POU pool (see Picture 1).

POUs > 3 X @ HumiditySensor X
=2 AC_ModuleAlarming MODULE HumiditySensor IMPLEMENTED BY HumiditySensor

B Error =

z SEC std.MetaData
% storage 3 Desc := TL.HumiditySensor_Desc ;
%2 Airstate (STRUCT) ‘ Category := Nfsct i
- o AC_Std 5 Icon lé := IP.HumiditySensor_Icon 16 ;
4. - & Icon_ 32 := IP.HumiditySensor Icon 32 ;
) Conditioners _ - - -
=) END_SEC
(=) Controllers = 2| SEC alg.2larm
+-I Functions = 3 SEC SetAlarm : ValueRange
=) Sensors 10 Class := Error;
=12 HumiditySensor 11 Message := IL.Alarm_Humidit;i:
+= THumiditySensor 1z LatchVarl := rRhlarmValueLow;
@ HumiditySensar LatchVar? := rAlarmValueHigh:

ModuleCalls := THIS | PRRENTS;
SEC CutsideRange

HumiditySensor {FB)
@ HumiditySensor_Emb

+-) PressureSensor - :::;::zi?f f .
+2) TemperatureSensor : LcwInclu:lieBc:x_:der '
+-o=0 ISensor HighIncludeBorder :

+ Sensor (FB)] AreaHigh := "ril

GlobalTextlist 1 END SEC

@ on z END_SEC

P 3| END SEC

SEC std.Parameters
SEC Param : rAlarmHumidityHigh
Variakle := rAlarmValueHigh;
Name := TL.Name rRlarmHumidityHigh:
Desc := TL.Desc rAlarmHumidityHigh:

m Library Manager
@ ProcessSystem
ProcessSystem (FB)

[callPrioMEDILMStart

o _in

oW R MR ORI R ORI RD ORI ORI R

i Init 3 END_SEC
H Project Information = a SEC Param : rAlarmHumidityLow
s 1 Variable := rhlarmValueLow;
] ProcessSystem az NWame := TL.Name_rRlarmHumidityLow;
{} Project Settings EE] Desc := TL.Desc_rAlarmHumidityLow;
24 END_SEC
35| END _SEC
= 36 SEC std.Visu
37 Embedded := [HumiditySensor Emb];
zs| END_sEC
52 Devices |[[) POUs | F® Modules]

14

CODESYS Application Composer

Picture 1: Module declaration

Each module declaration requires the specification of a function module (Modul-FB) as a basis, implementing
the program functionalities of the module. Within the module declaration the module FB can be supplemented
by additional properties and associated objects: * Parameters: Input variables of the module FB can be
designated as parameters. Parameters are then conveniently configured within a parameter module editor (see
Picture 2).

Modules > 1 X 5% HumiditySensor B ProcessSystem.HumidityConditioner [
=5 AC ModleAlarming

= @ ProcessSystem
o

Parameters |HMI | Information

=== Conditionar lConditioner Parameter Type Value Descript.. > Min < Max
== Conditioner [IConditioner] [
= HumidityConditioner Maximum Alarm Humidity ~REAL 0 Maximum...
Minimum Alarm Humidity ~REAL 0 Minimum...

4 HumiditySensor [Humidity Sensor]

Com R
mm Controller MController
e —ontroller [IController] [O]

Picture 2: Parameter editor

¢ Inputs/Outputs: Input and output variables of the module FB can be defined as module inputs and outputs.
Input variables of the module FB can be designated as parameters. The module inputs/outputs can then
be conveniently connected to variables, other module inputs/outputs or device inputs/outputs (see Picture
3).

ModuleDialog

= ntitle = ntitle
Untitled3 Untitled3
=85 Machine = [Device
s mechatronical sub system of the machine = @ﬂ PLC Logic
= -Yfa Mechatronics ———#- £} Application
= : E mechatronic actuators (pActuator: = ﬁj EtherCAT_Master
== Gantryyz = [Ex1io0
=.mm= ¥Cylinder = [EL1008
4% xInPosi o5 IX0.0
4% xInPos2 % IX0.1

"# xMoveToPosl —— 3L IN0.2

"$ xMoveToPos2 —\ % D0.3

ZCylinder \ 2L IN0.4
\\

% xInPosi
4% xInPos2
"% wMoveToPosl ——
"# xMoveToPos2 ——

% IK0.5
2 TN 6
% IND.7
= [ELz008

@ YLQX0.0
R mLQN0.1
P sLQx0.2
R mLOQX0.3
P LQX0.4
]

]

]

™ \
\ \\\
Gripper ‘x\ \\\—Pi
4% xIsOpen \\—}—
% xIsClosed —
"# xDoOpen —_— —
"% wDoClose —_— —_—_—__————Pi
=-%_] OMACProgramManagerSimple H—_—_—__—————}—
= |T1 ProgramSequence —
=0 EE-'.E'_'EZ'_'E'.E'_'E:. .
= l‘ BranchOnBool
4% xIn

" wTransitionRequested ——

4% xAbort

% xStart

%% QX0.5
%% Q0.6
QN7

]

Picture 3: I/0 editor

o Slots: Input variables of the module FB can be designated such that they can accept instances of other
module FBs. For example, if a module is supposed to be usable as a sub-module beneath another
module, a slot is defined in the father module that can accept the corresponding child modules. The
associated input variable is then automatically filled with the instances of the child module FBs during the
generation.

e Tasks: If it is a top level module (module without a father module), additional tasks can be defined that are
generated in the generator run and that automatically call specified methods of the module FB. A top level
module for its part then calls methods of its child module FB.

¢ Visualizations: Each module permits the definition of page and embedded visualizations. This will be
204

CODESYS Application Composer

automatically generated with and connected to the module during generation. Page visualizations are
displayed explicitly for one module. Embedded visualizations, on the other hand, can be embedded in the
page visualizations of father modules.

¢ Proxy Module FBs: Modules can define so-called proxy representative FBs of their own module FBs. A
proxy is used to make possible references on a module FB that go beyond the application and controller
boundaries by creating a proxy FB in the respective application as a representative of the referenced
module FB. The communication and data exchange between the module FB and its proxy FB below a
foreign application is automatically generated by the Application Composer generators.

¢ Instance-References: With so-called instance references you can define FB instances that will not be
identified until configuration time of the module by the module user with actual instances. For example
device FBs can be referenced in modules as instance references.

¢ Devices and inputs/outputs: Modules can define devices (e.g. fieldbuses) that are inserted with the module
into the device tree. The inputs and outputs of the devices can then be automatically connected to the
inputs and outputs of the module or modules. For the greatest possible flexibility the devices can also be
inserted as so-called “wildcards” which do not have to be filled with actual device types until the time of
generation (see Picture 4).

Wildcard assignment

F: \Program Files\35 CODESYS\CODESYS \defaultwildcard. xml

Building |

Device ID (Module name) | Selected Devices | Relations |_
+ Type: Static CODESYS Control Win V3]

- Type: FieldbusType EtherCAT Master

Fieldbus (Building) EtherCAT Master (3.5.3.0)

Type: BuscouplerType EK1100 Ethernet Coupler Ter...]
Buscoupler{(RoomStandard Office) EK1100 Ethernet Coupler Termina...

EL1008 8Ch. Dig. Input 24V,...

ClampInput (RoomStandardOffice) EL1008 BCh. Dig. Input 24V, 3ms...

Type: ClampOutputType EL2008 8Ch. Dig. Output 24V...
ClampOutput (RoomStandardOffice) EL2008 8Ch. Dig. Qutput 24V, 0.5...

Vendor: |<:AII vendorsz j

Mame | '-p"endcrﬂ
ﬂj EL1008 8Ch. Dig. Input 24V, 3ms BeckhoﬂJ
ﬁj EL1012 2Ch. Dig. Input 24V, 10ps Beckhofi
ﬂj EL1014 4Ch. Dig. Input 24V, 10ps Beckhofi
[l EL1014-0010 4Ch. Diq. Input 24V, isolated, 10ps Beckhoﬂﬂ

4 | 0

[Display all versions (for experts only)

["] Display outdated versions

[v] onlyshow compatibilitiesto firstgeneration of possible parentdevices

Device Property Assignment Cancel |

Picture 4: Assignment of module channels to devices

o Alarms: Along with visualizations and devices, modules can also use the CODESYS alarm management in
order to generate alarms for variables of their module FBs. These alarms can be displayed as well as
intercepted and evaluated via a call mechanism.

¢ Sequence module designation: If modules in the form of sequences are supposed to be editable, this can
be defined via the module declaration. Parameters, inputs/outputs or references can be specified which
are then displayed directly in the sequence steps.

o Default Submodules: Default assignments and default configurations can be specified for module slots
(see above). In the insertion of the module such a default assignment then fills the module slot
automatically with the predefined module, which can be correspondingly configured. After the declaration
of the modules and the implementation of the associated module FB, these modules can be inserted into
the module tree and configured. In order to finally obtain a functional IEC application only a generator run
has to be performed. Depending on the selection of generators and configuration, in the generator run the
complete IEC code, visualizations, devices etc. are generated beneath an application. The entire
generated code, or all objects created in the process can be freely viewed and edited under the device
tree.

34

CODESYS Application Composer

General information
Vendor:

CODESYS GmbH
Memminger Strasse 151
87439 Kempten
Germany

Support:
https://support.codesys.com

Item:

CODESYS Application Composer
Item number:

2101000006

Sales:

CODESYS Store
https://store.codesys.com

Included in delivery:
e License key

System requirements and restrictions

Programming System CODESYS Development System 3.5.11.0 or higher
Runtime System CODESYS Control Version 3.5.0.0

Note: Use the project “Device Reader” to find out which functions
Supported Platforms/ Devices are supported by the controller. “Device Reader” is available for

free in the CODESYS Store.
Additional Requirements -
Restrictions -

o Soft Key

(Workplace-bound licensing, free part of all CODESYS
products)

Licensing « Optional: CODESYS Key
(Increased security against loss of license keys,
transferable licensing to other workstations)
Required Accessories Optional: CODESYS Key

Note: Not all CODESYS features are available in all territories. For more information on geographic restrictions,
please contact sales@codesys.com.

Note: Technical specifications are subject to change. Errors and omissions excepted. The content of the
current online version of this document applies.

44

https://support.codesys.com
https://store.codesys.com

	Data Sheet CODESYS Application Composer
	Product description
	General information
	System requirements and restrictions

